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INTRODUCTION .

“Ihis report 1s a summary of work completed under NASA grant NGR 1l-
002-17% entitled "Determination of the Effects of Nozzle Nonlinearities
Upon the Wonlinear Stability of Liquid Propellant Rocket Motors". Research
activities supported by this grant were begun in-August 1973, and satis-
 factory progress has been maﬁe toward meeting the research cbjectives dur-
ing the first yeér of effort. Before glving a'deScription of this Progress,
_ the motivations and cbjectives of this research project will be briefly
reviewed. | 7 L ‘

. Various aerospace propulsion devices, such as liguid and =solid pro—;
vellant rocket motors and air breathing Jjet engines;-are often subject

.to combustion instabilities which are detrimental to the;perfoﬁma3ce'and

- -safety of operation of these_devices,“ln'ordef ﬁg;@ggign §tabl¢ éﬁginéé;::'_;gf;iﬁ;g

;. capabilities for a.priori determination of the linear and ‘nonlinear S -

characteristics of the instability and the range of operating conditions
for ﬁhich these engines are dynamically stable must be acquired. In
order to perform such an analysis, the behavior of the éxhaust nozzle
under osgillatory_flow conditions must.be understood. in'particular, it
- is necessary to know how a wave generated in the combustion.chamber is
“partially transmitted and partially reflected at the nozzle entrance.
This information is usually expressed as a boundary condition\(usﬂally
- referred to as a Nozzle Admittance Relation) that must be satisfied at the
ﬁgzzle entrance. ' | SR
Before such a boundary condition can be derived, the nature of the

wave motion®inside the nozzle must be investigated. The behavior of
oscillations in a converging-diverging supercritical nozzle was first
treated by Tsienl who considered the case in which the oscillation of =
the incoming flow is one-dimensional and igcthermal. Crocc02’3 extended
Tsien's work to cover the more general cases of non-isothermal one-~ and
three-dimensional oscillations. The analyses of Tsien and Croceo are .
“both restricted to small-amplitude (i.e., linear) oscillations. - More
recently, a nonlinear nozzle theory has been de#eloped by Zinn and Croccohf5’6

" who . extended the previous linear theories to thé investigation of the



behavior of finite-amplitudes waves. _
Tn recent studies (supported under NASA grant NGL 11-002-083) con-
ducted by %inn, Powell, and Lores, theories were developed which describe

9ﬁoimtﬂﬁhy

the nonlinezr behavior of longitudinal 58 and transverse
ties in Lliquid~propellant rocket charbers with quasi-steady nozzles. These
theories have now been extended to situations in which the instabilities
are three-dimensional and thé rocket combustors are attached to conven-
tional'nozzlesll. A1l of these theories have successfully predicted the
transient behavior, nonlinear waveforms, and limit-cycle amplitudes of
longitudinal and tangential instabilities in unstable motors.

A new nonlinear nozzle theory is needed for the following reasons.

5:6 is mathematically complicated

Mrst, the nonlinesr anglysis of Zinn
and requires consgiderable computer time. For this reasoh, Zinn's analysis
has never been used to perform actual computations of the wavelstructure |
in the nozzle or the nonlineér nozzle response. Secondly, the honlineaf
. nozzle admittance relation developed by Zinn is not compatible with the
recently developed nonlinear combustion theories (see References 7 through
11) . Consequently, a linear nozzle boundary condition or short nozzle
(quasi-steady) assumption had to be used in all of the combustion in-
stability theories developed to date. - With the exceptidn,of a few special
cases, where the amplitude of the instsbility is assumed to be moderate
and the mean flow Mach nurber is small (e.g., see Reference 9), the use of
a linear nozzle admittance relation in a nonlinear stebility analysis is.
cbviously inconsistent. Furthermore, in the case of transverse insta-
bilities the "linear" nozzle has been known to exert a destabilizing
effect; in these cases it is especially important to know how nonlinearities
affect the nozzle behavior.

The objective of this research program is to develop a three-
dimensiocnal, nonlinear nozzie admittance relation to be used as a
boundary condition in the recently-developed nonlinear combustion insta-
bility theories. This objective will be accomplished by performing the
following four tasks: 7

Task I: Development of the theory

Task II: Calculation of the nozzle response
Task ITT: Application of the nozzle theory to conbustion

Instability problems



Tagle TV: Preparation of the final technical report -

- Dueirg the flrot SlX months of this project, conszderable progress
was made Loward complotlng the flrst of the above tasks. However, un-
-faegeen difficulties in the mathematical formuilation of the problem arose
in December, and most of the first year was needed to cémplete Task I.
Orice the theory and computer programs. Were developed, Task IX was ccm—.
pleted during the remaining time; A one-year extension of Suppart has
" been granted by NASA to complete Tasks III and IV. A summary of .the Work.

_completed on Tasks I and IT is given in the remainder of this report.

TASK I: DEVELOPMENT OF THEORY

_Derivation of the Tozzle Wave Equation

As in the Zinn-Crocco. analySLs,5f6

« ».lations inside the slowly convergent, subsonic portion of an ax1sym—

-metric nozzle operating in the supercritical range were investigated.

The flow in the nozzle was assumed to bé adisbatic and inviséid and to
have no body forces or chemical reactions. The fluid was also aséumed ﬁo
be calorically perfect. L ' ‘_,' o ‘f, B ;
~ The nondimensional equatlons descrlblng the gaslﬁotlon in the HOZZleE{

were written in the following form:
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where v is the specific heat ratio; Vo Py B> and § are the dimension-
Jdess velocity, pressure, density and entropy respectively and t is the
dimensionless time.

Tt was also assumed that the nozzle Flow is isentropic and irro-
tational. Under these conditions the energy eguation (i;e., Equation
(3)}is no longer needed, the state equation {i.e., Equation (W) reduces
o the ilsentropic flow relation, p = pv, and a velocity potential exists
such that v@ = V. The continuity and momentum equations were combined,
with the aid of the isentropic relation, to yield the following eguation

which describes the behavior of the velocity potential:

2 - 2. -
VR - 8 = 2ve-VR, 4 ‘(v - 1) 3, V3 (5)

+\,L_§_l (v3-ve) 7% +% V8- v(vE-vB)

T™is equabtion is consistent with the wave equation used in the second-order
nonlinear combustion instability theory developed by Powell, Zinn, and
Iores (see Referénces 7 and 10). ' ‘ '

In the nonlinear combustion instszbility theories developed by Powell.
and Zinn, each variable was expressed as the sum of a space-dependent
steady state quantity and a time- and space-dependent perturbation quantity.
In order to obtain a nozzle admittance relation compabtible with these theo-

ries, the velocity potential was expressed as follows:

38 =3 +3' . (6)

where the prime denotes the perturbation quantity and the bar denotes
the steady-state quantity. Using the relation v& = ¥, FEguation (6) was
substituted into Equation (5) to obtain the following wave equatlon for the

nozzle:

A v e p [ o Bewwn] ¢ @
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Before _proceeding 'with the analysis, a coordinate system, appro-
priate. for the introduction of the boundary condition at the nozzle
walls, was chosen. ' 'Following the approach used by Zinn and Crocco5’6
. for an axi-symmetric nozzle, the axial variable =z was replaced by the
stéadynstate potential function ¢, and the radial varisble r was re-
placed by the steady-state stream function §. The potentialxand stream

- functions are defined by:

e dy - d :
S P o (8)

whére §s and &n respectively reyresent elementary (non—dimensional) _
lengths in the directions of the umperturbed streamlines and of their
normals on the meridional planes (see Figare 1) and u is the steady-
state veloecity. A third independent varlable, 9, measures the a21muthal
variation. In the new coordinate system, the perturbation velocity is

expressed in terms of 1ts components along the coordinate directions as:

vi=u'e + v'g +w'e _ ' o '(9)

‘where the e's arc unit vectors.
The transformation of Equation (7) %o (@,¥,0) coordinates was greatly

simplified by assuming that the steady-state flow is one—dlmen31onal,-wh1ch.
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Figure 1. Coordinate System used for the Sclution of the Oscillatory Nozzle Flow.



is a good approximationifor slowly convergent nozzles. .Under these con-

ditions bhe dependence of o and u on ¢ and O can be neglected, so that =

they are considered to be practically uniform on each surface © = constant.

Also bhe angle of cbliguity of the siream-lines %o the axis of symmetry
. is sufTicienkly small so that ihs .cosine is practically 1 and the element
of normal 6n along the surface ¢ = constant can be identified with dr.

Hence the first of Equations (8) was integrated to cbtain:

_.r L | - | '(3.0)

In addition the mean . flow velocity ivector appearing in Equation (7) is -

given by:

U= e, - @

With the aid of BEquations (10) and (11) and the expressions for the
‘Iaplacien, divergence, and gradient in a (p,¥,0) coordinate systen,

Equation (7) was transformed to the following equation:

’ \ e ' r-/ -r . ‘ 1 | ' | |
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In Equations (13} ¢ is the steady-state soniec velocity given by:
2.1zt (14)

= 5

Tn deriving Fouation (12) the third-order terms in Equation (7) (i.e.,
the last two terms on the right-hand side) have been neglected, thus

Fquation (12) is correct to second order.

Application of the Galexkin Method

The equations obtained by the above procedure have no known closed-

form mathemstical solubions. Conseguently, it is necessary to resort to



the wuse of either numcrlcal solutlon technlques or approximate analytﬂcal
Jechngque*. Since the numerical solubion bechniques generallj require
'QX(EQ5LVL vomputer ulme, the latter approach was used. In the nonanear
combugtion inst dbLlLty theories develoned by Powell and Zinn (see Refer- :
encesg ¥ - 11) the governing equations were solved by means of an approxi-
mate solution technique known as the Galerkin Method, which is a special
‘case of the Method of Weighted Residualslg’l3. In these investigations
it was shown that the Galerkin Method could be successfully applied in the
solution of nonlinear conbustion instability problems; its application
was straightforward and it regquired relatively little compubation time.
Thus the Galerkin Method was also used in the present aralysis to de-
termine the nonlinear nozzle admittance relation. ' _

In order tc employ the Galerkin—Method'in the solution of the wave
‘equation (i.e., Equation-(12), it was first necessary to express the ve-
locity potential, %7, as an approximating series expansion. The.stTHC- n
ture  of this series expansion was guided by the experience gained in’
the nonlinear nozzle admittance studies pérformed by Zinn and Croceo
(see Reference 5) es well as in the nonlinear combustion instability
analyses of Powell and Zinn (gee Reference 10). Thus the velocity po-

tential was expressed as follows:

} o - L
EZ }: iﬁ. (w) cos md J (Smn (Jt>2} e-%kmnmtj . (19)
' m—O n=1 ‘

In Equation (15), the functions Amn(@) are unknown complex functions
cf the axial varisble ¢. The 6~ and {-dependent eigenfunctions were de-
termined from the first-order (i.e., linear) solutions by Zinn5} In ﬁhese
functions m is.the transverse mode nuirber, n is_the radial mode number, Jm
ig a Bessel function of order m, ¢w is the velue of the steady-state stream
function evaluated at the nozzle wall, and Smn is a rcot of the equationl
dJm(x)/dx = 0. The expansions given above describe standing wave motion;
they can be easily modified to describe spinning wave motion. In the time-
dependence, w is the fundamental frequency which must be épecified and the
integer Kmn gives the freaquency of the higher harmonics. The values of k

for the various modes appearing in Equation (15) must be determined from
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the resulhts of the nonlinear combustion insﬁability analysis of Pawell
and Zinnlo. TFor example it was found that, due to nonlinear coupling be-
tween modes, the second tangential (m = 2, n = 1) and first radial (n = O,
n = 1) modes oscillated with twice the frequency of the first tangential

{m =21, n=1) mode.. Thus in Equation (15) kil = 1 for the first tan-

gential mode and k= 2 for the second tangential and the first radial

modes. The amplitudes and phases of the various modes depend on the
axial location (i.e., m) in the nozzls through the unknown funcitions
Amn(w). |

In order to simplify the algebra involved in the appliecation of the
talerkin Method, the approximating series expansion for 8’ is written as

a gingle summaticn as follows:

X 1wt |
3 =) o) @) ¥ (h) e P (26)
p=l ' ' '

where to each value of the index p, there corresponds the mode numbers
m{p) and n(p), which determine the value of kp' In Eq. (16) C%(B) and
?P(¢) arc the ¢-and {-dependent functions while N is the number of terms
in the series expansion. In the present analysis, a three-term expan-
sion consisting of the first tangential { p = 1; m =1, n = 1), second tan-
gential (p = 2; m =2, n = 1) and first radial (p = 3; m =0, n = 1) modes
was used, but the theory is applicdble to any nuﬁber of modes.
~ In order to obtain the solution, the unknown p-dependent functions,

AP(¢0, were determined by the Galerkin Method as follows. The assumed
series expansion for the velocity potential (i.e., Eq. (16))was sub-
stituted into the wave equaiion to form the residual, B (%"). In the
event that this resgidual is identically zero, the assumed éolution is
an exact solution. The residual, therefore, represents the error in-
curred by using the approximate solutions given by Eq. (16). The Galer-
kin Method determines the amplitudes Ap(m) that minimizes the residual
E(ZY). |

Applying the Galerkin Method, the residual E(2') was required to
satisfy the following Galerkin orthogonality conditions:
P
E[IE(?B”) Tj(t) ®j(e) Yj(q:) ag dt = 0 j=1,2, ... W . (7

3



The weighbing funchions Tj(t)’ @j(e) and Yj($) correspond to the terms
that appear in the assumed series expansion. The temporal weighting
viunction, Ti(t)’ is th@ﬂcémplex conjugate of the assumed time dependences:.
Tthus - ‘

-ik wb

Tj(t) =e P o (18)

The azimuthal weighting functions, ®j(9),.aré given by

®j(8)'= cos md e :77_: : l_ (19)_

 while the radial weighting functions, Yj(¢), are given by

_T . Jﬁ[s ( ) } o K‘; - . (25)

The .time intégrationiis-performed over one perlod of osbillaﬁion,,‘-

T =-i?, while the spatial integration is performed over any gurface
of v = constant in the nozzle (in Eq. (17). dS indicates an incremental
area on this surface) .

Evaluating the sPatial and temporal integralé in Bg. (17) yields
the followihg system'of N nonlinear, second order, coupled, complex
ordinary differential equations to be-solved for the complex amplitude
functions, A (¢) : ' |

+ C ~— 03 A?(qﬁ

NN 4 a2 g dA' .
E: E: {Dl A_{o) a8 (o) aA (o)

o q | 2 gt dw.

o as (@) R
1y R S 4 DA () —— + D (o) 4, (o))

+Q=0 | =12, ... N . (21

11



- In the above equations, Q represents the additional nonlinear terms
that arise when a complex solution (i.e. Eg. (16)) is used to solve the
nonlinesr wave equation {i.e. Eg. (12)). These terms are similar in

form bo the nonlinear terms shown, but they involve the complex con- -

. jugates of Lhe amplitude functions. The procedure for deriving these

terms is given in Appendix B of Ref. 11. The coefficients Ck and Dk ara
functions of the axial varlable p as well as the indices j,p and g.
Analytical expressions for these coefficients contain integrals involv-
ing trigonometric and Bessel functions. In the absence of closed-
form expressions for the integrals of Bessel functions, these integrals
were computed numerically.

‘As a check on the above analysis, a single mode serles consisting
of the first tangential mode was used in deriving Eq. (21). For this
case, all the coefficients-of the nonlinear terms vanish and the re-

sulting linear equation is:

2 2

—2,-2 -2 d°A =-2[1 du .
(" -~ w) —5 - u |5 o +-21w] —
d@? _CE dop dep
(22)
2
S -2
LA ey - 1 u  du 2} _

+ { Eﬁ; puc” - = iw 25-65— + 0" Alp) =0

which is identical to Crocco and Sirignano's equation3 for the isentropie

and irrotational case.

Dominance of the 1T Mode

The well known fact that most trangverse instsbilities behave like
the first tangential (1T) mode was used to further simplify Eg. (21).
Based on the results of the recént combustion instability theory,l; it
was assumed that the amplitude of the 1T mode was considerably larger
than the amplitudes of the remaining modes in the series solution.
Through an order of magnitude analysis, correct to the second order,

Eq. (21) reduced to the following system of equations:
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a“A -2 ., aA
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p~ s - ‘ : e
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The sbove equations can be written concisely as follows:

d2A (cp) . ( )

dA (o '
i () Tb%—— (o) g ¢ @A) = Lle) (24

where Il(cp) = 0. ' o

T4 can be seen that the asbove equations are decoupled with respect
to the 1T mode; that is, the solution for Al can be obtained indepen-~
dently of the amplitudes of the other modes. Thus, to second order, the
nonlinearities of the problem do not affect the LT mode. On the other

" hand the nonlinearities influence the amplitudes of the higher modes



(i.e., firys A?...) by means of the inhomogeneous terms in the equabions

for the obher medes.

Homogeneous and Particuler Solutions -

fgnation (2h) is a second order, linear ordinary differential
equation end its general solution is a combination of the homogeneous

solution that satisfies the homogeneous part of Eg. (24), i.e.,

- (h) (0 - |
L{A } + Mp ""E'"dm + Np Ay ' = 0 . (25)

and the particular solution that satisfies FEq. (24). The general so-

lution can be written in the following form:

a0 =K A KQKéh) + Aéi)

h)

where Aéh) and ﬁé are two independent solutions of Eg. (25),'31 and.

K, are arbitrary constants, and.APl is a particular solution of the in-
homogenedus equablon. :
Examination of the coefficients of Eg. (24) show that this equatlon

has the follcw1ng singular points:

o

u =

il
Il
[e R
il
P
no
i
1

ot
1l
8

For a supercritical nozzle with a finite area entrance, only the singu-
larity at the throat is of concern to us. Assuming that the singularity

(1)

of the solution appears in.ﬁ? , the condition requiring the regularity
of the solution at the throat can be expressed by requiring Ké = 0.

Consequently, the required solution of Eq. (2%) is of the form

Ao =5 @ o+ al @ . (26)



DEleaquu of Admlttaﬂce Relatlons

Using the. ibove result, a nonlinear admittance relatlop to te used .

28 a houtdary Condltlon in nonllneax COTbustﬂon 1nstab111ty analyses carn

- be devived. Denoting the terms of Eq (16) by

ik wt

= Y
50 = 4 (06O () e ©

’
P

taking partisl derivatives with respect to z and £, and using Eq. (26)

gives
) . dkptaa (3)
5o @P(e),w§(¢) e T f;ﬁg—- |
ik wt dA (h)
=X u@(e)‘i’(@e o “&%—
5P - 1kpw @P(e) \Yp(q;)' e _Ap “ |
ik wt
K 1k w @ (9) ¥ (w) e Aékﬂ
Eliminating | between Egs.(28) and (29) and defining
art™ fag
L B)
D
- (1)
r o=—2 _ G 2p (h)2]
P 2B Lp dy P
» ,
iﬁ§
v o=
P Y pw
yields:
sty Yp 53 = - uc @p(s) ‘fp(q;} e I"p K

p=21,2,...N

(28)

(29)

(30)

(31

(32)

(33)



Pauation (33) is the nonl ueax nozzle aduittonce ralabion, Lo.he
used az the bowndary condition at the nozzle entrance in nonlinear com-
hustion instebiliby snalyses. The right-hand-side of this equation
arises from the nonlinear terms in the nozzle wave equation. The quan-~
tities Y. and I are. respectively the linear and nonlinear admittance
coeff¢c1ints for the pth mode. The nonlinear admittance,I%, represents
the effect of nozzle nonlinearities upon the nozzle admittance and it is
identically zero when nonlinsarities are not present. .

Tt can easily be shown that Eq. (33) can be written in terms of the

- pressure. and axial velocity perturbations as:

g
U—YP:—ucF- = 1,2,...0 in
D T p , P s6 3 (3)

where Ub and PP are the amplitudes of the axial wvelocity and pressure

perturbations respectively as given by:

ik wh -

p'= ) B(e) @) (1 F (35)
p=Ll

, al ikpmt :

R ACKRORAOL . (36)
p=1

Equation (34) is equivalent to Eq. (33) to second order only when the
Mach nuriber at the nozzle entrance, u , is small,

In order to use the admittance relaﬁlon {Eq. {33) or (34)} in the
combustion instability theories, the admittance coefficients YP (or gp)
and Tﬁ must be determined for a given nozzle. The eguations governing
these quantities are readily derived from Eg. (24%) using the definitions

for gp {i.e., Egs.(30) and (31)). The resulting equations are:

d
i YV
o i MPQP LI X | .(37)



J -2 I '
coo2_ (. oy - bdu . '
B = ( HC, L g M)T B N _(38)

TASK TII: CAIGULATION OF THE NOZZLE RESPONSE

_ To obtain the nozzle response for any specified nozzle, Egs. (37)
and (38)‘are solved in the following manner. As pointed out earlier,
the nonlinsar terms vgnish-for the 1T mode'(i.e., Fl = G, Illz O) and -

it is only necessary to.solve Eg.. (37} to obtain &y {and hence X&) at

the nozzle entrance. Since Eg. (37) does not depend on the higher modes,
it caft be solved ihdependently for gi. Once.gl has veen determined, both

. (37) and (38) must be solved for the other modes. In order %o do
thls, the amplitude A, (@) must be determined since Eq. (38) depends on
A (w) and its derlvatlves through I () . Once Ql(m) is known, A ( ) is
‘determlned by numerically 1ntegrat1ng Eq. (30) where the constant of in-
tegration is determlned by the specified value of the pressure ampli-
tude Pl (of the 1T mode} at the nozzle entrance. The value of Al thus
found is introduced into Eg. (38) which is then solved for r
It may be cbserved that Eg. (37) and (38) have 31ngular1t1es at

thé same points as Bg. (2) . As before, the only singularity of interest
is the throat. Since Fgs. (37) and (38)7ére first order ordinary differ-
ential equations, the mmerical integratioﬁ of these éqﬁations mist stard
at some initial point where the initial conditions are known, and termi-
nate at the nozzle entrance where the admittance coefficients'Yﬁ and tp
are needed. Since the equations are singular at the throat, the inbe-
gration ié initiated at a point that is located a short distance up-
stream of the throat. The needed initial conditions are cbtained by ex-
panding the dependent variables in a Taylor series sboub the throat . |
(@ = 0); thus, | '

C,0) = 00 +ogl(O) + .o S (399

T§(¢0

&

L) +erl© foe . (z)



The coefficients gp(o) and gI;(o) can be determined Wy substituting
Eg.:(39a) in fq. (37),and tdringthe Limit as ¢ = 0. The results are:

N (0) '
GPCO) = - Mf)-(aj— : | (L0a)

-M'(C o) - B0 2(0 - N (0) ‘
/(o) - P() gp() L, ) - ) 1o , (10n)
P H)(0) + Mp({)) '

p=1,2, ... §

Similarly, rk(o) and, l*li(o) can be determined by substituting Eq. (390}

in Eq. (38), and taking the limit as ¢ — O. The results are:

. T {0) ' ' .
[ (0) = - R | (v12)
P ¢=(0) Mﬁ(o)
-2
r@ = { - 0 1) O T, +¥5F G © 1O 5,0

- ‘.2(0) M‘(0) T (0) + y-1 -@EE(O) M {0) T (o)
¢ D T 2 dep P P

- T/(0) }/{62(0) H(0) + 22(0) MP(O)} _ (L1b)

In Egs.(37) andy(38), the quantities Hb, MP’ Nﬁ and IP are functions
of the steady-state flow variables in the nozzle and these must be com-
puted before performing the numerical integration to cbtain gp and tP'
Tor a specified nozzle profile, the steady-state quantities are zomputed
by solving the gquasi-one-dimensional isentropic steady-state egquations
for nozzle flow. Figure 2 shows the nozzle prefile used in our compu-
tations. All of the length varisbles have been non-dimensionalized with
regpeet Lo the radius of the combustion chamber, to which the nozzle is

attached, and hence r, = 1. At the throat r,,_ is fixed by the Mach num~-

th
ber at the nozzle entrance plane. The nozzle profile is smooth and is:
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Section Section Section
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Figure 2. Nozzle Prl:}fiie Us€d in Calenlasing Admittances..
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completely gpecified by’rcc, e and el, which are respectively the radius
of curvaturc at the chamber, radius of curvature at the threat and slope
of the central conical section. The steady-state equations are inte-
grated using equal steps in steady-state potential @ by beginning at the
throat and conbinmuing to the nozzle entrance where the radius of The wall
eguals 1.

Computations of the admittance coefficlents have been performed using
a three-term series expansion consisting of the first tangential, second
tangential and first radial modes. An Adam-Bashforth predictor-corrector
scheme was used to perform the numerical'integration, while the starting
values needed to apply this method were obtained using a fourth order
Runge-Kutta integration scheme. The integratlon computer program hag
been written so that the integration can be performed up %o the nozzle
entrance and also inside the combustion chamber for amy desired distance.
Thus , the admittance relation is obtained at the nozzle entrance seetion
or at any station inside the chamber. Computations have been performed for
several nozzles, at different frequencies and pressure amplitudes of the '
first tangential wmode.

Figures 3 and 4 show the frequency dependence of the linear ad-
mittance coefficients for the 1T, 27, and 1R modes for a typical nozzle

o

(6 =20, r., = 1.0, rop

of the 1T mode, while the freguency of the 2T and IR modes is 2w due to

= 0.9234; M = 0.2). Here, w is the frequency

nonlinear coupling. Hence the real parts of the linear admittance coef-
ficients for the 2T and 1R modes abttaln their peak values at a higher
freguency than that for the 1T mode. The linear adﬁittance ceoefficlents
For the 1T mode are in complete agreement with those calculated previously
by Bell and ZinnlLL as expected from Fg. (22).

The frequency dependence of the nonlinear admittance coefficient
for the 2T mode is plotted in Fig. 5 with pressure amplitude of the 1T
mode as a parameter. While the behavior of the linear admittance co-
efficient depends only upon the frequency of oscillationg, the behavior
of the nonlinear admitbtance coefficient is geen fto depend on the ampli-
tude of the 1T mode. This result is expected, since in Fg. (38), IP is
a function of the amplitude of the 1T mode. As expected The absolute

valuzs of both Tr and Fi increase with increasing pressure amplitude of



the 1T mode, which acts as a drivihg force. It is observed that the
‘absolute ﬁalues ot T.;and T. vary similarly with frequency as the ab--
‘solute values of Y and Y The frequency dependence of the nonlinear
admittance coa Echlent for the 1R mode is plotted in Flg 6 with pressure
amplitude of the 1T mode as a parameter. ,

Figures 7 and 8 show the effect of pressure amplitudé upon the
magnitude of the ratioc of nonlinear admittance coefficient to the linear
‘admittance coefficient for the 27 and 1R modes respectively. These re-
sults cledrly ind¢cate that the nonlinear contribution to the nozzle
‘admlttanca is algnlfirant and should be included in nonlinear combustlon .

stability analyses.
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